Cite this: Org. Biomol. Chem., 2012, 10, 2518

www.rsc.org/obc

COMMUNICATION

Syntheses of (-)-pelletierine and (-)-homopipecolic acid[†]

Wen-Hua Chiou,* Guei-Tang Chen, Chien-Lun Kao and Yu-Kai Gao

Received 25th November 2011, Accepted 27th January 2012 DOI: 10.1039/c2ob06984a

Enantiomeric syntheses of (-)-homopipecolic acid and (-)-pelletierine have been achieved by chiral resolution of tropanol followed by Baeyer–Villiger oxidation. The methodology provides a practical route for the synthesis of optically pure piperidines.

Substituted piperidine systems are often found in many natural alkaloids and medicinal compounds with potent biological activities.¹ Enantiopure functionalized piperidines have attracted much attention from synthetic chemists, resulting in abundant approaches to their synthesis.² In recent years, various strategies for introduction of chirality in piperidines have been developed, briefly described as follows: (1) Enzymatic resolutions.³ (2) Organocatalyst-mediated reactions such as aza-1,4-addition, aza-Henry reaction,⁵ aminooxylation,⁶ addition with lithiopiperidine⁷ or lithiated N-BOC allylamine derivatives.⁸ (3) Readily available chiral amines as nitrogen sources, including phenylethylamine,⁹ Betti base,¹⁰ phenylglycinol,¹¹ sulfinamide,¹² naphthyl-ethylamine,¹³ SAMP/RAMP hydrazones,¹⁴ and ROPHy/SOPHy oxime ethers.¹⁵ (4) Chiral auxiliaries as templates, including Evans' oxazolidinone for asymmetric azidation¹⁶ and Brown's IPC-borane for asymmetric allylation.¹⁷ (5)Asymmetric transition-metal catalyzed reactions, *e.g.* Sharpless epoxidation,²⁰ intramolecular hydroamination,²¹ hydrogenation of aromatics,²² aza-Diels–Alder reaction,²³ cycloisomerization of homopropargylic amines.²⁴ (6) Chiral pool derived routes.²⁵ Here, we report enantiomeric syntheses of (R)-homopipecolic acid and (R)-pelletierine, from optically active 6-tropanol, easily prepared by Robinson annulation followed by resolution with (L)-tartaric acid.

Our synthesis commenced with the preparation of tropanone derivative **1a**, readily available by a modified Robinson tropanone synthesis.¹⁹ Acidic hydrolysis of commercially available 2,5-dimethoxydihydrofuran in a hydrochloric acid solution at room temperature gave 2-hydroxybutanedial. The resulting

Scheme 1 Synthesis of tropanol 2.

aldehyde solution was combined with allylamine, acetone dicarboxylic acid in an acetate buffer solution at pH 5.0 overnight to afford alcohol **1a** in 46% yield accompanied by a side product in 15% yield, identified as methyl ether **1b**. The formation of methyl ether **1b** could be attributed to the occurrence of methoxy migration during the hydrolysis. Protonation of 2,5dimethoxydihydrofuran followed by loss of a methanol produced a cation species **I** as an intermediate for annulation to form alcohol **1a**. However, the methoxy group migration brought the formation of cation **II** which was the precursor for the further reaction to yield methyl ether **1b** (Scheme 1). Treatment of tropanone derivative **1a**, with hydrazine and KOH at an elevated temperature reduced the ketone group to a methylene group and removed the allyl group simultaneously, affording 6-tropanol (**2**) in 82% yield.

Enantiomerically pure 6-tropanol (2) was achieved by chiral resolution using (+)-tartaric acid as a resolving agent. Mixing of racemic 6-tropanol (2) with equal molar amount of (+)-tartaric acid produced tartrate salts which could be recrystallized in methanol to afford chirally pure salts as single crystals. The crystal structure has been elucidated clearly by X-ray crystallographic analysis as (1R,5S,6R)-tropanol with (+)-tartaric acid (Fig. 1).

After removal of tartaric acid with a basic solution, optically pure tropanol (+)-2 was reacted with CbzCl in the presence K_2CO_3 in THF to give carbamate (+)-3 in 99% yield with 98.4%

Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, R.O.C. E-mail: wchiou@dragon.nchu.edu.tw; Fax: +886-4 22862547; Tel: +886-4-22840411-420

[†]Electronic supplementary information (ESI) available: Experimental procedure, all ¹H, ¹³C NMR spectra and assignment for all compounds, and HPLC chromatograms of (+)-**3**, (+)-**6** and (+)-**9**, and crystallographic data of (+)-**2**-tartrate salt in CIF format. CCDC 855622. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/ c2ob06984a

Fig. 1 ORTEP drawing of (R,R)-tartrate salt of tropanol (+)-2.

Scheme 2 Synthesis of (*R*)-homopipecolic acid (–)-7.

Scheme 3 Synthesis of (R)-pelletierine (-)-10.

ee confirmed by chiral HPLC analysis ((+)-3 $t_{\rm R}$ 5.6 min; (-)-3 $t_{\rm R}$ 7.1 min). With enantiopure tropanol derivative (+)-3 in hand, subsequent TEMPO-catalyzed bleach oxidation furnished ketone (+)-4 in 93% yield. Reaction of ketone (+)-4 with one equivalent of mCPBA in the presence of Na₂HPO₄ in CH₂Cl₂ resulted in a selective Bayer-Villiger oxidation to provide lactone (-)-5.26 The amount of mCPBA was crucial in the reaction in that excess of mCPBA brought about a yield decrease in this reaction.²⁷ Lactone (-)-5 was a quite unstable substance in either acidic or oxidative conditions. Silica gel purification of lactone (-)-5 resulted in the formation of 5,6-didehydropipecolic acid and reduced the yield of the desired lactone. Thus, reduction of crude lactone (-)-5 with triethylsilane-boron trifluoride in CH₂Cl₂ at -78 °C afforded a 87% yield of N-Cbz homopipecolic acid (+)-6 over two steps, as white solids: mp 72–74 °C, $[\alpha]_D^{25} + 2.8^\circ$ (c: 1.9, CHCl₃) (93% ee, (+)-6 $t_{\rm R}$ 19.4 min; (-)-6 $t_{\rm R}$ 22.5 min).²⁸ Chiral HPLC analysis of acid (+)-6 confirmed the chiral integrity arrived intact during the processes mentioned above. Thus, reflux in a 6 N HCl solution was carried out to remove the Cbz protecting group, followed by treatment with

propylene oxide to remove excess hydrogen chloride, giving (*R*)-homopipecolic acid (7) in 93% yield. The specific rotation value of (–)-7, $[\alpha]_D^{25} -24.0^\circ$ (c: 0.4, H₂O) was consistent with the reported value, ${}^{9a}[\alpha]_D^{25} -23.4^\circ$ (c: 0.4, H₂O) (Scheme 2).

Subsequent transformations to (*R*)-pelletierine were straightforward (Scheme 3): acid (+)-**6** was coupled with methoxymethylamine using EDC–HOBt activation protocol, yielding Weinreb amide (+)-**8** in 88% yield. Addition of 3.5 equivalents of MeMgBr in THF at 0 °C yielded Cbz-protected pelletierine (+)-**9** in 86% yield as a colorless oil: $[\alpha]_D^{25} + 12.0^\circ$ (c: 2.5, CHCl₃) (96.1% ee, (+)-**9** t_R 10.5 min; (-)-**9** t_R 11.7 min), (lit.²⁸ $[\alpha]_D^{25} + 10.2^\circ$ (c: 2.5, CHCl₃). Exposure of *N*-protected pelletierine (+)-**9** in a hydrogen atmosphere to palladium on carbon in ethyl acetate produced free pelletierine (-)-**10** in 91% yield. The specific rotation value of (-)-**10**, $[\alpha]_D^{25} -19.6^\circ$ (c: 0.7, EtOH) was also consistent with the reported value, $[\alpha]_D^{25} -22.1^\circ$ (c: 4.1, EtOH).²⁹

In conclusion, enantiomeric syntheses of (*R*)-homopipecolic acids and (*R*)-pelletierine have been achieved from (+)-6-tropanol, available from Robinson annulation and followed by resolution with (+)-tartaric acid. Baeyer–Villiger oxidation of 6-tropanone (+)-4 provided lactone (-)-5 as a key intermediate. The enantiomeric excess values of *N*-Cbz homopipecolic acid (+)-6 and *N*-Cbz pelletierine (+)-9 have been confirmed by chiral HPLC analysis, as well as their specific rotation values. Subsequent extension of this methodology towards other natural products of interest is currently underway.

Acknowledgements

The authors thank the National Science Council, Taiwan (NSC98-2119-M-005-002-MY3) and the Instrument Center of National Chung Hsing University for support of this research.

References

- For some leading references, see: (a) M. Hesse, Alkaloids: Nature's Curse or Blessing? Wiley-VCH, New York, 2002; (b) E. Fattorusso and O. Taglialatela-Scafati, Modern Alkaloids: Structure, Isolation, Synthesis and Biology, Wiley-VCH, Weinheim, 2008.
- 2 For excellent reviews about piperidines, see: (a) S. Laschat and T. Dickner, *Synthesis*, 2000, 1781; (b) P. M. Weintraub, J. S. Sabol, J. M. Kane and D. R. Borcherding, *Tetrahedron*, 2003, **59**, 2953; (c) M. G. P. Buffat, *Tetrahedron*, 2004, **60**, 1701.
- 3 (a) S. Ciblat, P. Besse, V. Papastergiou, H. Veschambre, J.-L. Canet and Y. Troin, *Tetrahedron: Asymmetry*, 2000, **11**, 2221; (b) M. Angoli, A. Barilli, G. Lesma, D. Passarella, S. Riva, A. Silvani and B. Danieli, *J. Org. Chem.*, 2003, **68**, 9525.
- 4 (a) S. Fustero, D. Jiménez, J. Moscardó, S. Catalán and C. del Pozo, Org. Lett., 2007, 9, 5283; (b) E. C. Carlson, L. K. Rathbone, H. Yang, N. D. Collett and R. G. Carter, J. Org. Chem., 2008, 73, 5155.
- 5 G. Kumaraswamy and A. Pitchaiah, Tetrahedron, 2011, 67, 2536.
- 6 T. M. Shaikh and A. Sudalai, Eur. J. Org. Chem., 2010, 3437.
- 7 (a) I. Coldham, S. Raimbault, P. T. Chovatia, J. J. Patel, D. Leonori, N. S. Sheikh and D. T. E. Whittaker, *Chem. Commun.*, 2008, 4174; (b) T. K. Beng and R. E. Gawley, *J. Am. Chem. Soc.*, 2010, **132**, 12216; (c) I. Coldham and D. Leonori, *J. Org. Chem.*, 2010, **75**, 4069.
- 8 (a) T. A. Johnson, M. D. Curtis and P. Beak, J. Am. Chem. Soc., 2001, 123, 1004; (b) T. A. Johnson, D. O. Jang, B. W. Slafer, M. D. Curtis and P. Beak, J. Am. Chem. Soc., 2002, 124, 11689.
- 9 (a) S. G. Davies, A. M. Fletcher, P. M. Roberts and A. D. Smith, *Tetrahe-dron*, 2009, **65**, 10192; (b) A. M. Chippindale, S. G. Davies, K. Iwamoto, R. M. Parkin, C. A. P. Smethurst, A. D. Smith and H. Rodriguez-Solla, *Tetrahedron*, 2003, **59**, 3253.

- 10 G. Cheng, X. Wang, D. Su, H. Liu, F. Liu and Y. Hu, J. Org. Chem., 2010, 75, 1911.
- 11 M. Amat, M. Pérez and J. Bosch, Chem.-Eur. J., 2011, 17, 7724.
- 12 F. A. Davis, B. Chao, T. Fang and J. M. Szewczyk, Org. Lett., 2000, 2, 1041.
- 13 Y. Yang, D. P. Phillips and S. Pan, Tetrahedron Lett., 2011, 52, 1549.
- 14 D. Enders and T. Thiebes, Pure Appl. Chem., 2001, 73, 573.
- 15 C. J. Moody, Chem. Commun., 2004, 1341.
- 16 P. K. Kundu and S. K. Ghosh, Tetrahedron: Asymmetry, 2011, 22, 1090.
- 17 F.-X. Felpin, S. Girard, G. Vo-Thanh, R. J. Robins, J. Villiéras and J. Lebreton, J. Org. Chem., 2001, 66, 6305.
- (a) J. S. Yadav, M. S. Reddy, P. P. Rao and A. R. Prasad, *Synthesis*, 2006, 4005;
 (b) S. K. Cherian and P. Kumar, *Tetrahedron: Asymmetry*, 2007, 18, 982;
 (c) H. Yokoyama, Y. Hayashi, Y. Nagasawa, H. Ejiri, M. Miyazawa and Y. Hirai, *Tetrahedron*, 2010, 66, 8458.
- 19 G. A. Cortez, R. R. Schrock and A. H. Hoveyda, Angew. Chem., Int. Ed., 2007, 46, 4534.
- 20 G. Satyalakshmi, K. Suneel, D. B. Shinde and B. Das, *Tetrahedron: Asymmetry*, 2011, 22, 1000.

- (a) J. Y. Kim and T. Livinghouse, Org. Lett., 2005, 7, 1737;
 (b) M. Narsireddy and Y. Yamamoto, J. Org. Chem., 2008, 76, 9698.
- 22 F. Glorius, Org. Biomol. Chem., 2005, 3, 4171.
- 23 P. R. Girling, T. Kiyoib and A. Whiting, Org. Biomol. Chem., 2011, 9, 3105.
- 24 C. Kim, H. J. Bae, J. H. Lee, W. Jeong, H. Kim, V. Sampath and Y. H. Rhee, J. Am. Chem. Soc., 2009, 131, 14660.
- 25 (a) Y. Nakatani, J. Oshita, K. Ishigami, H. Watanabe and T. Kitahara, *Tetrahedron*, 2006, **62**, 160; (b) W.-H. Chiou, G.-H. Lin and C.-W. Liang, *J. Org. Chem.*, 2010, **75**, 1748; (c) R. W. Bates, K. Sivarajan and B. F. Straub, *J. Org. Chem.*, 2011, **76**, 6844.
- 26 O. Affolter, A. Baro, W. Frey and S. Laschat, *Tetrahedron*, 2009, 65, 6626.
- 27 Reactions with either 5.0 or 3.0 equivalents of mCPBA did not produce the desired lactone 5, but an unidentified mixture.
- 28 Our data is not consistent with the literature specific rotation value of 6: -18.0° (c: 0.5, CHCl₃) reported in ref. 4b.
- 29 H. Takahata, M. Kubota, S. Takahashi and T. Momose, *Tetrahedron:* Asymmetry, 1996, 7, 3047.